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In general, kinetic rate data may be represented by van’t Hoff’s four-parameter equation. When this is true,
the mathematical properties of the Laplace transform may be used to derive phenomenological equations that
describe the energy-dependent reactive cross sections and microcanonical rates in terms of the same four
parameters. Since the macroscopic rate data and microscopic expressions are related by the Laplace transform,
these microscopic descriptions do not imply new information; they simply express the information contained
in the rate data in another form. The Monte Carlo techniques used to determine confidence envelopes for the
rate data may also be used to provide confidence envelopes or “bounds” for the energy-dependent properties.
These microscopic expressions may be used to compare and contrast theoretical calculations or as a starting
point in RRKM or master equation calculations. Both the forward and reverse H+ O2 T OH + O reactions
and the associative reaction CH3 + CH3 f C2H6 are used to illustrate the above ideas. In the first example,
the cross section for the reverse reaction shows that it is not dominated by the dipole-quadrupole interaction.
The cross section for the forward reaction is obtained by fitting rate data from 158 to 5300 K and peaks just
above the threshold of 8354 K. In the second example, comparison to recent theoretical calculations highlights
the importance of angular momentum and the centrifugal barrier.

I. Introduction

Thermal rate constants are one of the most important
properties for chemical reactions. They are needed to model
the chemistry of the atmosphere, combustion, and waste
incineration. In general, experimental measurements of the
temperature dependence of the rate constant are reduced by least-
squares analysis.1 The best-fit parameters from this reduction
along with their associated uncertainties and correlations are
then used to produce reaction mechanisms that are used to model
complex chemical systems. Three calculations are generally
needed to compare measurements to theoretical predictions.
First, the potential energy surface must be calculated.2 Second,
transition state theory,3 or one of its modern variants,4-6 is
used to approximate the energy and angular momentum resolved
rate, k(E, J). To overcome the approximate nature of these
calculations Yamamoto7 and Miller5,8 introduced the reactive
flux correlation function to calculate exactly the cumulative
reaction probability,N(E). Finally, these energy-dependent
descriptions are related to the rate constantVia Boltzmann’s
average and the reactant partition function. The goal of this
work is to use experimental temperature-dependent kinetic and
thermochemical data to provide phenomenological descriptions
of the energy dependence of chemical reactions. These descrip-
tions can then be compared to measurements of the reactive
cross section and theoretical calculations ofk(E, J) or N(E).
They may also be used to classify reactions or as starting points
for the calculation of pressure-dependent rates in the falloff
region of associative and dissociative reactions.
In this work, the mathematical properties of the Laplace

transform are used to derive phenomenological expressions for
reactive cross sections and microcanonical rates in terms of the

parameters used to describe the rate data. These expressions
may be viewed as alternate descriptions of the data.9 As such,
they do not contain information that is not in the data; the
information is simply presented in a different form. Previously,
Menzinger and Wolfgang10 discussed a number of forms of
energy-dependent reactive cross sections and LeRoy11 discussed
the implications of three general forms of the reactive cross
section. Here, an alternate approach is presented. We assume
the kinetic data are adequately described by van’t Hoff’s (1898)
equation,12 k(T) ) ATm exp[-(E + DT2)/T]. The inverse
Laplace transform is used to derive an analytic expression for
the thermally averaged cross section in terms of the parameters
of van’t Hoff’s equation:A, m, E, andD. The need stressed
by Polanyi and Schreiber,13 for “bounds” on the cross section,
can be answered with this expression and the Monte Carlo
techniques14 that are used to assign confidence envelopes to
the kinetic data. The philosophy behind this work is that kinetic
experiments are limited to one or at most two dimensions,
temperature and pressure, and that all experimental data have
uncertainties. Therefore, within the limitations of bulk experi-
ments and their associated uncertainties, we wish to extract the
maximum amount of information about a reaction. This
information can be displayed both as a temperature-dependent
rate coefficient and as an energy-dependent cross section or
microcanonical rate. For both of these descriptions the experi-
mental uncertainties may be used to generate realistic limits
for the information. In the next section, the phenomenological
equations for the reactive cross section and microcanonical rate
are derived. In addition, for reactions that have a negative
temperature dependence that may be described by Berthelot’s
(1862) equation,15 A exp(-DT), the parameterD is shown to
characterize an effective barrier that depends upon the internal
temperature of the reacting species. In section III, data for the
forward and reverse rates of the reaction H+ O2 T OH + O
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are analyzed to determine the thermally averaged cross sections
and their confidence envelopes. The formulation used to reduce
the kinetic data16 and the Monte Carlo simulations14 needed to
calculate confidence envelopes are briefly described. Data that
span different temperature ranges are used to demonstrate how
extending the temperature range of kinetic measurements
improves the confidence envelopes for both the rate data and
the cross section. Finally, data for the high-pressure rate of
the associative reaction CH3 + CH3 f C2H6 are analyzed and
microcanonical rates are calculated. These compare favorably
to a direct variational RRKM calculation of the energy and
angular momentum resolved rates,17 which is based on 8000
points from a recentab initio calculation of the potential energy
surface.18 In section IV, general implications of the derivations
and examples are discussed.

II. Derivation

A. Bimolecular Reactions. The concept of a cross section
has been used to describe collisions between atoms and
molecules,19 absorption of particles by nuclei,20 and chemical
reactions.21 The general equation for a rate coefficient,k, in
terms of an energy-dependent cross section,σ(εt), for struc-
tureless particles is given by

where the reduced mass of the species isµ, Boltzmann’s
constant iskB, the translational energy isεt, and the subscript
“ t” has been added to the temperature to denote that it
characterizes the distribution of the translational energies of the
colliding species. If the particles have structure,i.e., electronic,
rotational, and vibrational levels, the above equation can be
rewritten as

where γ1 and γ2 are the sets of electronic, rotational, and
vibrational quantum numbers for each of the reactive species.
In a kinetic experiment, the quantum levels of the reactive
species cannot be selected. Therefore, their populations are
assumed to be given by Boltzmann’s distribution, which is
characterized by an internal temperature,Tint. Under some
conditions it may be necessary to characterize the populations
by different temperatures,e.g., an electronic, a vibrational, and
a rotational temperature. However, to simplify this discussion
all of these are set equal toTint. Therefore, the thermally
averaged rate coefficient may be written

while the thermally averaged cross section is written

The partition function,Q12, is given by

where the coefficientsg1i andg2j represent the degeneracies and
E1i and E2j the energies of the levels of species 1 and 2,
respectively. With these definitions,22 eq 2 may be written

In general,Tint andTt will be equal, but to differentiate between
the distributions of the translational and internal energies the
subscripts are retained.
The most useful analytic description of temperature-dependent

rate data is given by van’t Hoff’s (1898) equation.15 Although
van’t Hoff did not distinguish between internal and translational
temperatures, his equation may be written to retain this
distinction. His modified equation is

This modification is justified by the fact that the parameterE
is associated with the threshold of the reaction. This and all
other properties that distinguish one reaction from another must
be contained in the potential energy surface and, therefore,
cannot depend upon the translational energy of the species. It
follows that the parameterD, which is associated with Berthe-
lot’s (1862) equation,15 must depend upon the potential energy
surface and not the translational energy. This approach is
analogous to the use of an “effective” potential to account for
the centrifugal barrier at different values of the impact param-
eter.23 Also, note that Boltzmann’s constant has been introduced
into the pre-exponential temperature term; the dimension of the
coefficientA is length3time-1energy-m. For convenience, and
to more clearly separate internal and translational aspects, the
notation may be changed and eq 7 may be rewritten as

where

This is equivalent to Kooij’s (1893) equation,15 but with an
effective energy that depends upon the distribution of internal
energy of the reacting species. Of course, a more complex
equation for the effective energy could be invoked. However,
one must first establish that the additional complexity is needed
to reproduce the data. When eqs 6 and 8 are combined one
obtains

From a table of Laplace transforms,24 the thermally averaged
reactive cross section is given by

wherem> -3/2, the unit step function isΘ (εt - Eeff), and the

k(Tt) ) ( 8

πµ(kBTt)
3)1/2∫0∞εtσ(εt) exp(-εt/kBTt) dεt (1)

k(Tt, γ1, γ2) ) ( 8

πµ(kBTt)
3)1/2∫0∞εtσ(εt, γ1, γ2) ×

exp(-εt/kBTt) dεt (2)

k(Tt, Tint) )
1

Q12
∑
i,j)1

∞

g1ig2jk(Tt, γ1i, γ2j) exp[-(E1i +

E2j)/kBTint] (3)

σ(εt, Tint) )
1

Q12
∑
i,j)1

∞

g1ig2jσ(εt, γ1i, γ2j) exp[-(E1i +

E2j)/kBTint] (4)

Q12 ) ∑
i,j)1

∞

g1ig2j exp[-(E1i + E2j)/kBTint] (5)

k(Tt, Tint) ) [ 8

πµ(kBTt)
3]1/2∫0∞εtσ(εt, Tint) exp(-εt/kBTt) dεt

(6)

k(Tt, Tint) ) A(kBTt)
m exp[-(E+ DkB

2Tint
2 )/kBTt] (7)

k(Tt, Eeff) ) A(kBTt)
m exp[-Eeff/kBTt] (8)

Eeff ) E+ DkB
2Tint

2 (9)

A(kBTt)
m+3/2 exp(-Eeff/kBTt) ) ( 8πµ)

1/2∫0∞εtσ(εt, Eeff) ×
exp(-εt/kBTt) dεt (10)

σ(εt, Eeff) ) A(πµ
8 )1/2 (εt - Eeff)

m+1/2

εtΓ(m+ 3/2)
Θ (εt - Eeff) (11)
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Γ function is Γ(m + 3/2). Since A has the dimension
length3time-1energy-m, thenσ(εt,Eeff) has the dimensionlength2,
as it should.
Equation 11 implies that if kinetic rate data can be described

by equation 7 or 8 then the reactive cross section can be
described by the same parameters. Since this cross section is
related to the kinetic data through the Laplace transform,
additional information has not been produced; the information
contained in the kinetic data has simply been transformed. This
transformation is analogous to the fact that quantum mechanical
systems may be described either in coordinate or momentum
space. The two representations of quantum systems are related
by the Fourier transform, while for thermal kinetic systems the
temperature-dependent rate coefficient and the energy-dependent
cross section are related by the Laplace transform. In 1974,13

Polanyi and Schreiber stated “What is needed is some method
of obtaining the bounds on the cross section”. Later, when the
H + O2 T OH + O reactions are considered, we shall
demonstrate how thermochemical and kinetic data may be
combined to obtain a self-consistent set of data and how Monte
Carlo simulations that are used to determine confidence
envelopes for the rate data can also be used to generate
confidence envelopes, or “bounds”, for the cross section. These
bounds reflect the fact that the experimental data are available
only over a finite temperature range.
Before proceeding, it is instructive to look at the behavior of

eq 11. Ifm e -3/2, the Laplace transform is not valid. For
-3/2 < m< -1/2 the cross section has an integrable singularity
at εt ) Eeff and decays rapidly asεt increases. This is
demonstrated by the curve labeledm) -1 in Figure 1. Form
g -1/2 the cross section is no longer singular. Atm ) -1/2
the dependence upon energy falls off as 1/εt and is shown by
the curve labeledm ) -1/2. For -1/2 < m < 1/2 the cross
section increases from zero atεt ) Eeff, peaks atεt )
2Eeff/(1 - 2m), and then decays to zero asεt f ∞. At m) 0
van’t Hoff’s expression of 1884, which was later reproduced
by Arrhenius in 1889,12 A exp(-Eeff/kBTt), is obtained. Here,
the cross section peaks atεt ) 2Eeff. Form ) 1/2 the simple
collision expression of Lewis and Trautz, which reaches a
maximum asεt f ∞, is recovered. Form> 1/2 the cross section
rises monotonically fromεt ) Eeff; this is shown as the curve
labeledm ) 1. It is important to note that the parameterm,
and onlym, controls the shape of the cross section, whileA

determines its magnitude andEeff determines the location of
the singularity or its origin. At this point, we consider the
Wigner threshold law for reactions that proceed over a
threshold.25 This law states that in the threshold region

where the relative angular momentum of the reacting species
is l ) 0, 1, 2,etc. Just above threshold the additional centrifugal
barrier limits the contribution from high angular momentum
states so thatl ) 0, thes-wave state, dominates. Therefore,
the integrable singularity that occurs form e -1/2 violates
Wigner’s threshold law. From this we conclude that data that
produce a best-fitm that is less than-1/2 must be interpreted
cautiously. Above the threshold region the chemical potential
controls the reactivity and, therefore, the value ofm. Since all
of the curves in Figure 1 intersect atεt/Eeff ) 2, the parameter
m can be determined from collisions withEeff e εt e 2Eeff.
Therefore, whenEeff has a finite value the shape of the cross
section can be determined from kinetic data up toTt ∼ 4Eeff/kB.
WhenEeff f 0 most of the collisions will have kinetic energies
greater than 2Eeff and it will be important to obtain data at as
low a temperature as possible. Of course, in either case, the
larger the temperature range of the data the more preciselym
will be determined. This observation may appear to be in
conflict with conventional wisdom that states measurements
must be performed over an infinite temperature range to obtain
information about the behavior of the reactive cross section.
This apparent conflict can be resolved when one realizes that
conventional wisdom is based upon the fact that numerical
calculations of inverse Laplace transforms are exceedingly
difficult.26 However, in this case, measurements over a finite
temperature range are replaced by the assumption that if eq 7
or 8 adequately reproduces the data over a range of temperatures
it will continue to be adequate at lower and higher temperatures.
An alternate way of looking at this problem is that if kinetic
data are available over a sufficiently large temperature range,
e.g., over the temperature range needed to model atmospheric,
combustion, or incineration processes, and if the data are
adequately fit by eq 7 or 8, then eq 11 is an adequate description
of the energy-dependent cross section. The term adequate may
be quantitatively defined in terms of confidence envelopes,
which will be discussed later.
To derive a phenomenological expression for the micro-

canonical rate,k(εt, Eeff), recall that it is related to the canonical
or macroscopic rate,k(Tt, Eeff), through

where the translational partition function per unit volume is
Q(Tt), which is given by

Since the partition function is the Laplace transform of the
translational density of states per unit volume,F(εt), it follows
that

Therefore, one can immediately write the thermally averaged
microcanonical rate as

Figure 1. Normalized cross section as a function ofεt/Eeff for various
values of the parameterm. See the text for details.

σ(εt, l) ∝ (εt - Eeff)
(2l+1)/2 (12)

k(Tt, Eeff) ) 1
Q(Tt)
∫0∞F(εt) k (εt, Eeff) exp(-εt/kBTt) dεt (13)

Q(Tt) )
(2πµkBTt)

3/2

h3
(14)

F(εt) ) 4x2πµ3/2

h3
εt
1/2 (15)

Calculation of Reactive Cross Sections J. Phys. Chem. A, Vol. 102, No. 24, 19984519



where the thermal average is over the internal degrees of
freedom of the reacting species. From eq 11 we have

Again, eq 17 implies that if kinetic rate data can be described
in terms of eq 7 or 8 then a thermally averaged microcanonical
rate can be described by the same parameters. In addition,
confidence envelopes or “bounds” may also be calculated for
this rate.
B. Associative Reactions. The high-pressure limit of

associative reactions may be written as a simple bimolecular
reaction.27,28 Therefore, the microcanonical rate for association
is given by eq 17. Some associative reactions proceed on a
barrierless potential energy surface,e.g., H + CH3 and CH3 +
CH3. Previously14 it had been demonstrated that the high-
pressure limit of methyl-methyl association has a negative
temperature dependence that is best described by Berthelot’s
(1862) equation.15 Neither the Harcount-Essen equation of
1895,AT-m, nor Kooij’s (1893) equation,AT-m exp(-E/kBT),
provides an adequate description of these data. Therefore, it is
important to assign physical significance to the parameterD in
Berthelot’s equation, which from eq 7 we write asA
exp(-DkBTint

2 /kBTt) since bothE andm are zero. First, con-
sider the expression for the associative microcanonical rate, eq
17, in the limit of zero internal energy,Tint f 0. Then

For a finite value of the internal temperature the microcanonical
rate becomes

At high translational energies,εt . DkB
2Tint

2 , this rate ap-
proachesA. At translational energies comparable to the internal
energies of the species,εt ∼ DkB

2Tint
2 , an effective threshold to

association exists and depends upon the internal energy con-
tained within the associating species. Therefore, the parameter
D characterizes a temperature-dependent effective barrier

that is due to the internal energy of the species. This barrier is
analogous to the centrifugal barrier.23 As was stated above,
the parameterm, and onlym, controls the shape of the cross
section. Therefore, it also controls the shape of the micro-
canonical rate. For Berthelot’s equationm is fixed at zero.
Therefore, the only way Berthelot’s equation can reproduce any
temperature dependence is through a temperature-dependentEeff.
It is well-known that it is difficult to extract the high-pressure

limit of associative reactions from experimental data; as the
temperature is increased, exceedingly high pressures are needed.
In general, this limit is obtained by assuming an analytic
expression for the pressure-dependent behavior in the falloff
region29 and reducing the data with a nonlinear least-squares
fit.30 An advantage of the approach presented here is that the
microcanonical rate given by eq 17 may be used as a starting

point for calculating rates in the falloff region. Either standard
RRKM techniques or a one-dimensional master equation31may
be used to calculate pressure-dependent rates. These calculated
rates may then be compared to measured rates and a best-fit
set of parameters may be determined. With this approach, it
will be possible to extract simultaneously the parameters of eq
7 for the high-pressure rate coefficient and the parameters
needed to describe the pressure-dependent behavior. In addition,
the experimental uncertainties may be used with Monte Carlo
simulations to calculate confidence envelopes for the high-
pressure rate coefficient, the microcanonical rate, and the
macroscopic rates.

III. Illustrations

A. Bimolecular Reactions. To illustrate the above concepts
consider the elementary reactions between hydrogen, oxygen,
and the hydroxyl radical. The reaction H+ O2 f OH + O is
the most important reaction in combustion and has been
measured from 962 to 5300 K. The reverse reaction, OH+ O
f H + O2, is important in modeling stratospheric and interstellar
chemistry and has been measured from 158 to 515 K. The first
measurements of the reverse reaction were reported by Lewis
and Watson and covered the temperature range 221-499 K.32
Shortly thereafter,33 Howard and Smith reported measurements
from 250 to 515 K and Brune, Schwab, and Anderson performed
measurements at 300 K.34 Recently, Smith and Stewart
extended measurements down to 158 K.35 Unfortunately, the
data of Lewis and Watson and the two sets from Smith’s group
do not overlap. The two sets from Smith’s group will be used
for this illustration.
The different spin-orbit states of the reactants of the reverse

reaction produce a temperature-dependent contribution that
complicates analysis of the measured rate coefficients. Spin-
orbit effects may be introduced into the rate coefficient36 by
defining a hypothetical rate coefficient and writing

where Fel(T) accounts for the electronic degeneracy of the
reactants,kmeas(T) is the measured rate coefficient, andkhypo(T)
represents the rate coefficient of the hypothetical reaction that
proceeds on a single potential energy surface. The correction
factorFel(T) is given by

where the partition function of the oxygen atom isQO(T) and
the rotational partition functions for the different spin-orbit
states of hydroxyl areQrot(2∏1/2) and Qrot(2∏3/2). The rate
coefficients for the hypothetical reaction are given in Table 1
and Figure 2. The negative temperature dependence of the
hypothetical rate coefficient and the fact that the reaction
proceeds on a barrierless potential energy surface37 suggest that
a different empirical expression, which accommodates behavior
in the quantum threshold region, should be used to reduce the
data.38 However, in this system the quantum threshold region
extends only up to 1 K. Therefore, the data are in the high-
temperature region where the Harcourt-Essen equation,15ATm,
is appropriate. Berthelot’s equation,15 A exp(-DT), is also
appropriate. The data were reduced by nonlinear least-squares
techniques with a dimensionless formulation.16 The best-fit

k(εt, Eeff) ) [2/µ]1/2εt
1/2σ(εt, Eeff) (16)

k(εt, Eeff) ) A
2

π1/2
(εt - Eeff)

m+1/2

εt
1/2Γ(m+ 3/2)

Θ(εt - Eeff) (17)

k∞asso(εt, Eeff f 0)) A (18)

k∞asso(εt, Eeff f DkB
2Tint

2 ) ) A(1-
DkB

2Tint
2

εt
)1/2Θ(εt -

DkB
2Tint

2 ) (19)

Eeff ) DkB
2Tint

2 (20)

khypo(T) ) Fel(T)kmeas(T) (21)

Fel(T) ) { 1
QO(T)}{ 1

1+
Qrot(

2Π1/2)

Qrot(
2Π3/2)

} (22)
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results with the Harcourt-Essen equation are

The correlation coefficient between the two parameters is 0.998;
this indicates a near maximum correlation. The best-fit
parameters for Berthelot’s equation are

The correlation coefficient between the two parameters is 0.938,
which, again, indicates a near maximum correlation. The
uncertainties listed above are the standard deviations determined
by Monte Carlo simulations.14 The values ofø2, øred

2 t
ø2/(number of degrees of freedom), and the moments of the
normalized residuals are given in Table 2. The lower value of
ø2 for eq 23 suggests that it provides a better representation of
the data. However, inspection of the values oføred

2 shows they
are both less than 1.0. Therefore, the data are not precise enough
to select one equation over the other. This is shown graphically
in Figure 2 where the solid line represents eq 23 and the dash-
dot-dash line eq 24. It is immediately clear that data down to
20 K will significantly improve the experimental description

of this reaction. For the remainder of this illustration we shall
consider only the results of the Harcourt-Essen equation.
Since confidence envelopes can only be obtained from Monte

Carlo simulations,14 a brief description follows. They are
performed by generating several sets of simulated data. To
generate a set each measured point is randomly varied within a
Gaussian (normal) distribution with its standard deviation.
These simulated data are then reduced to produce a set of best-
fit parameters. These parameters are then related to the original
data by calculating theø2 merit function with the new best-fit
parameters and the original data. This value ofø2 will be greater
than the value calculated with the original data. The difference
between these is denoted∆ø2 and stored along with the new
set of parameters. After a sufficiently large number of simula-
tions have been performed, histograms and scatter plots of the
fractional changes in the parameters may be displayed and the
standard deviations, skewness, kurtosis, and correlation coef-
ficients calculated. Confidence envelopes are generated by
sorting the values of∆ø2 in ascending order, while the
parameters associated with each are retained. Then, for a desired
temperature range, the locus of points ofkmin(T) and kmax(T)
are calculated from the sets of parameters associated with the
lower 68.3 or 95.4% of the values of∆ø2. The curves defined
by the locus of thekmin(T) and kmax(T) values define the
confidence envelope of the rate coefficient. Since the temper-
ature range may exceed the range of the measurements, this
approach may be used to obtain realistic uncertainties in regions
where data have not been obtained. Furthermore, in general, it
is not possible to describe eitherkmin(T) or kmax(T) by a simple
analytic function. The 68.3 and 95.4% confidence envelopes
for the reverse rate are shown as the dashed and dotted lines,
respectively, in Figure 2. A close inspection shows that over
the temperature range of the data the dash-dot-dash line falls
within the 68.3% confidence envelope of the solid line. This
lends further support to our conclusion that the data are not
precise enough to select one representation of the data over the
other.
Now that an analytic expression for the rate coefficient and

its confidence envelope have been determined, the reactive cross
section may be calculated. The analytic expression for the
reactive cross section, eq 11, is used with the parameters of eq
23 to produce the cross section shown as the solid line in Figure
3. Just as the confidence envelope for the rate expression is
determined from the sets of parameters from the Monte Carlo
simulations, the confidence envelope for the cross section is
given by the locus of points defined byσmin (εt) andσmax (εt).
The 95.4% confidence envelope for the cross section is shown
by the dotted lines in Figure 3. This thermally averaged cross
section, which has been calculated only from experimental data,
may be compared to an analytic fit to the quantum-mechanical
cross section determined by Graff and Wagner,37 the dash-
dot-dot line in Figure 3, the cross section calculated in the
adiabatic capture infinite-order sudden approximation by Clary
and Werner,36 the dashed line, and the state-to-state calculations
of Marques, Wang, and Varandas,39 the circles with vertical
lines. At these relatively high energies the quantum-mechanical
calculation of Graff and Wagner scales asεt

-1/2, which is
consistent with the long-range dipole-quadrupole interaction.
The cross section calculated from the kinetic data scales as
εt

-0.692(0.055, which implies that the reaction is controlled by
the chemical potential. Note, although the theoretical and
experimental cross sections agree nearεt/kB ∼ 100 K, the
theoretical cross sections calculated by Graff and Wagner and
Clary and Werner are outside the 95.4% confidence interval

TABLE 1: Measured, Hypothetical, and Forward Rate
Coefficients for O + OH

T, K kmeas,a cm3 s-1 Fel khypo, cm3 s-1 kfwd, cm3 s-1

158 (6.10( 0.60)× 10-11 7.41 (45.2( 4.4)× 10-11 8.14× 10-33

190 (5.20( 0.30)× 10-11 8.13 (42.3( 2.4)× 10-11 5.38× 10-29

227 (4.50( 0.30)× 10-11 8.88 (40.0( 2.7)× 10-11 6.37× 10-26

250 (4.04( 0.18)× 10-11 9.30 (37.6( 1.7)× 10-11 1.74× 10-24

294 (4.20( 0.20)× 10-11 10.02 (42.1( 2.0)× 10-11 2.82× 10-22

300 (3.53( 0.31)× 10-11 10.11 (35.7( 3.1)× 10-11 4.22× 10-22

375 (3.36( 0.24)× 10-11 11.10 (37.3( 2.7)× 10-11 1.12× 10-19

445 (3.10( 0.27)× 10-11 11.84 (36.7( 3.2)× 10-11 3.59× 10-18

515 (2.76( 0.14)× 10-11 12.44 (34.3( 1.7)× 10-11 4.23× 10-17

aReferences 33 and 35.

Figure 2. Measured rate coefficients for the reaction OH+ Of H +
O2. The best-fit curve, eq 23, is given by the solid line. The 68.3%
confidence envelope is shown by the dashed lines and the 95.4%
envelope by the dotted lines. The data represented by the filled circles
are from refs 33 and 35.

TABLE 2: Statistical Results for the Least-Squares Analysis
of O + OH f H + O2

eq ø2 øred
2 std dev skewness kurtosis

23 5.94 0.85 0.86 +0.39 -0.47
24 6.17 0.88 0.88 -0.01 -0.95

khypo(cm
3 s-1) ) 7.4( 1.5× 10-10T(K)-0.192(0.055 (23)

khypo(cm
3 s-1) ) (4.59( 0.26)× 10-10 exp{[(-5.6(

1.7)× 10-4]T(K)} (24)
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for εt/kB e 60 K andεt/kB g 300K. Conversely, the calculations
by Marques, Wang, and Varandas fall within the experimental
confidence envelope. This agreement between theoretical
calculations and experimental measurements is even more
remarkable when we recall that there is no adjustable parameter
to scale either theoretical or experimental results.
To begin the discussion of the forward reaction, note that

both the forward and reverse reactions are elementary. There-
fore, the equilibrium constant may be used to relate their rate
coefficients.40 Table 1 also shows the calculated forward rate
coefficients. Although the measured rate coefficients of the
reverse reaction change by less than an order of magnitude, the
forward rate coefficients change by over 15 orders of magnitude
between 158 and 515 K. Therefore, almost all of the temper-
ature dependence of the calculated forward rate coefficients may
be associated with the temperature dependence of the equilib-
rium constant. Furthermore, since the partition functions of the
reactants and products change very little at these low temper-
atures, the temperature dependence of the equilibrium constant
is dominated by the change in molar enthalpy of the reaction,
∆H0

0/R ) 8317( 156 K.40 To assure that the high-tempera-
ture data are consistent with both the thermochemical data and
the lower temperature measurements of the reverse rate coef-
ficients, the calculated forward rate coefficients will be com-
bined with direct high-temperature measurements of the forward
rate coefficients. The rate coefficient for the forward reaction
was measured from 946 to 1705 K by Pirraglia, Michael,
Sutherland, and Klem.41 Master, Hanson, and Bowman mea-
sured the rate of formation of hydroxyl between 1450 and 3370
K and extracted the forward rate coefficient.42 We also
monitored hydroxyl to determine rate coefficients from 2050
to 5305 K.43 Later, Ryu, Hwang, and Rabinowitz performed
additional measurements between 1050 and 2500 K and
discussed the work of other researchers.44 For this illustration,
only our high temperature data, the data of Masten, Hanson,
and Bowman, and the data of Pirraglia, Michael, Sutherland,
and Klem will be used. Each set of data was tested to determine
if it was consistent with the calculated low-temperature rate
coefficients and the thermochemical data. The three sets used
in this illustration meet these criteria.
The high-temperature data will be analyzed in two steps to

illustrate how an increase in the temperature range of the data
improves the confidence envelopes for both the rate and its cross
section. First, the data of Pirraglia, Michael, Sutherland, and
Klem are combined with the calculated rate coefficients at lower
temperatures, Table 1. The results of a nonlinear least-squares
fit give

The uncertainties above are the standard deviations calculated
from the Monte Carlo simulations. The values ofø2, øred

2 t
ø2/(number of degrees of freedom), and the moments of the
normalized residuals are given in Table 3. The data, the best-
fit curve, and the 95.4% confidence envelope are shown in
Figure 4. To illustrate uncertainties in the high-temperature
behavior of the rate coefficient, the best-fit curve and confidence
envelope have been extended up to 10 000 K. At the 95.4%
confidence level the parametermextends from-0.63 to+0.06.
Therefore the shape of the cross section will fall between the
m ) -1/2 andm ) 0 curves shown in Figure 1. Clearly, to
obtain a more precise description of the cross section, data at
higher temperatures are needed. To accomplish this the data
sets of Masten, Bowman, and Hanson and Du and Hessler were
added to the previous set. These data, their best-fit curve, and
the 95.4% confidence envelope are shown in Figure 5. The
best-fit parameters from this full set of data give

Again, the uncertainties are the standard deviation calculated
from the Monte Carlo simulations. A careful comparison of
Figures 4 and 5 shows that the vast majority of the higher
temperature data fall within the confidence envelope of the

Figure 3. Cross section for the reverse reaction OH+ O f H + O2.
The solid line is calculated with the parameters of eq 23 and the dotted
lines represent the 95.4% confidence envelope. The dash-dot-dot line
represents the calculation of Graff and Wagner37 and the dashed line
the calculation of Clary and Werner.36 The vertical lines represent the
range ofJ values of the state-to-state calculations by Marques, Wang,
and Varandas.39

Figure 4. Lower temperature data for the rate of the reaction H+ O2

f OH + O. The solid line represents eq 25 and the dotted lines the
95.4% confidence envelope. The data are from ref 41 and Table 1. See
the text for details.

TABLE 3: Statistical Results for the Least-Squares Analysis
of H + O2 f OH + O

eq ø2 øred
2 std dev skewness kurtosis

25 157.9 0.97 0.98 -0.052 -0.46
26 211.0 0.96 0.97 +0.034 -0.51

ln{kfwd(cm
3 s-1)} ) -(19.36( 0.88)-
(0.35( 0.12)ln{T(K)} - (8345( 61)/T(K) (25)

ln{kfwd(cm
3 s-1)} ) -(18.95( 0.24)-

(0.406( 0.030) ln{T(K)} - (8354( 30)/T(K) (26)
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lower-temperature data, that both the best-fit curve and confi-
dence envelope of Figure 5 fall within the confidence envelope
of Figure 4, and, most importantly, that the confidence envelope
of Figure 5 is significantly smaller than the one in Figure 4.
Furthermore, a comparison of the parameters in eqs 25 and 26
demonstrates that the addition of high-temperature data refines
the parameters,i.e., the parameters of eq 26 fall within the
standard deviations of the parameters of eq 25 and the standard
deviations in eq 26 are smaller than in eq 25. Inspection of
Table 3 shows that in both cases the values oføred

2 are less than
1.0. Therefore, we can say all of the 223 points between 158
and 5170 K can be described by a single rate expression that
contains only three parameters. Equally significant are the facts
that the histogram of the normalized residuals is Gaussian with
a standard deviation of 0.97 and that systematic deviations
cannot be identified. Therefore, any assertion that the rate
coefficient must be described by a sum of rate coefficients is
not supported by experimental data. This does not imply that
the rate coefficient cannot be described by a sum of partial rate
coefficients. However, it does imply that there is a relatively
tight confidence envelope that any sum of partial rate coef-
ficients must fall within. Later, we will discuss the implications
of this for the cross section.
The influence of additional information about the rate

coefficient on calculations of the thermally-averaged cross
section is shown in Figure 6. Here the 68.3% confidence
envelopes for both of the above calculations are shown. The
dotted lines represent the confidence envelope from the lower
temperature data, Figure 4, and the dashed lines the confidence
envelope for the full set of data, Figure 5. The solid line
represents the thermally averaged cross sections calculated with
the parameters of eq 26. The upper dotted line indicates the
possible singular behavior of the lower temperature data set.
Recall, in general it is not possible to write a simple analytic
expression for the confidence envelope. Perhaps the most
significant aspect of Figure 6 is not that the confidence envelope
is reduced when higher-temperature data are added, but that
the confidence envelopes provide a realistic description of the
range of possible values of the cross section. Clearly, if the
lower temperature data were the only available data our
experimental knowledge of the cross section would be limited.

As was shown previously, the cross section calculated from
the experimental data may be compared to calculated cross
sections and, if available, measured cross sections. To illustrate
this, the thermally averaged cross section calculated from the
parameters of eq 26 and its 95.4% confidence envelope are given
in Figure 7. The points in this figure are the measurements
performed by Wolfrum’s group45,46 and the dashed line is the
theoretical calculation of Varandas.47 It is tempting to compare
the measured cross sections to the thermally averaged cross
section determined from the kinetic data. However, this
comparison would not be valid. Although the translational
energies of the hydrogen atoms used to measure the cross
sections were very high, the vibrational temperature of the
oxygen molecules was near room temperature,Tint ∼ 294 K.
Similarly, the classical trajectory calculations performed by

Figure 5. Full data set for the rate of the reaction H+ O2 f OH +
O. The solid line represents eq 26 and the dotted lines the 95.4%
confidence envelope. The data are from refs 41-43 and Table 1. See
the text for details.

Figure 6. Comparison of confidence envelopes calculated from the
two different sets of data shown in Figures 4 and 5. The dotted lines
represent the 68.3% confidence envelope calculated from the lower
temperature data only, Figure 4, and the dashed lines represent the
68.3% confidence envelope calculated from the full data set, Figure 5.
The solid line is calculated from the parameters of eq 26.

Figure 7. Comparison of the cross section for the reaction H+ O2 f
OH+ O. The solid line is calculated from the parameters of eq 26 and
the dotted lines represent the 95.4% confidence envelope. The points
are the measurements from refs 45 and 46 and the dashed line represents
the theoretical calculation of ref 47.
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Varandas were also limited to the ground vibrational level.47

Zhang and Zhang have performed time-dependent quantum
wave packet calculations forν ) 0, 1, 2, and 3 on the same
surface.48 They find that rovibrational excitation gradually
decreases the probability amplitude. However, they also point
out that, when measured in kinetic energies, this does not imply
that excitation decreases reaction probability. For completeness
we note that Leforestier and Miller calculated the cumulative
reaction probability for this reaction,49 Yang and Klippenstein
have compared statistics and dynamics,50 Pack, Butcher, and
Parker have computed three-dimensional quantum probabili-
ties,51 and Miller and Garrett have quantified the non-RRKM
behavior.52 Any detailed discussion of these or other works
goes beyond the scope of this article.
Before concluding this illustration we must discuss the

implications for the cross sections that are often calculated for
specific internal states such as vibrational or rotational states.
Simply stated, it is very difficult, although not impossible, to
extract information about specific internal states from thermal
kinetic data. If the cross sections and, therefore, the rate
coefficients associated with different internal states are signifi-
cantly different, then precise kinetic data over a sufficiently large
temperature range will force the experimentalist to describe the
date in terms of two or more parallel channels. To the extent
that the data demand a multichannel description, the parameters
associated with these channels may be determined along with
the uncertainties. In the above illustrations the data did not
indicate that a multichannel description is needed. Therefore,
we cannot make any statements about the rate coefficients or
cross sections associated with individual internal states. How-
ever, we can make statements about the thermally averaged rate
coefficients and cross sections. In particular, eqs 3 and 4 give
the thermally averaged rate coefficients and cross sections in
terms of rate coefficients and cross sections associated with
specific internal states. The uniqueness theorem of Laplace
transforms53 and their linear property require that each cross
section associated with an internal state has a rate coefficient
that is associated with the same internal state. Furthermore,
the thermally averaged rate coefficient and cross section derived
from the rate coefficients and cross sections of the internal states
must fall within the confidence envelopes calculated from the
kinetic data. Therefore, since the measured and calculated cross
sections shown in Figure 7 are associated only with the ground
vibrational level of molecular oxygen, we can conclude that
higher vibrational levels of molecular oxygen must make a
significant contribute to the thermally averaged cross section
just above the threshold of 8354 K. Furthermore, aboveεt/kB
) 18 000 KWolfrum’s measured cross sections and Varanda’s
calculated cross section tend to fall within the 95.4% confidence
envelope of the thermally averaged cross section. Therefore,
we may anticipate that the cross sections from higher vibrational
levels of molecular oxygen will not contribute significantly
aboveεt/kB ) 18 000 K. At the present time, we have extracted
all of the information that may be extracted from the thermal
kinetic data.
B. Associative Reaction. To illustrate the properties of

associative reactions, consider methyl-methyl association to
form ethane. Previously,14 we demonstrated that the high-
pressure rate coefficient follows Berthelot’s equation and is
given by

The high-pressure rate data, best-fit curve, and 95.4% confidence

envelope are shown in Figure 8. The microcanonical rate for
an internal temperature of 500 K and its 95.4% confidence
envelope are shown in Figure 9. The microcanonical rates
calculated from eq 19 for 200, 1000, and 2000 K are shown in
Figure 10. For each of these, the effective barrier heights,Eeff/
hc, are 38.4, 959, and 3836cm-1, respectively. When eq 13 is
used to calculate the macroscopic rates, the microcanonical rates
shown in Figure 10 reproduce the experimental data.
It is instructive to compare the microcanonical rate presented

above with rates calculated from a potential energy surface.
Fortunately, Harding has recently performed ab initio calcula-
tions of the potential energy surface at the CAS+1+2/cc-pdz
level.18 Approximately 8000 randomly chosen points have been
calculated. Klippenstein used these ab initio points in a direct
variational RRKM calculation of theE and J resolved rate,
k(E, J), of the dissociation of ethane.17 Here,E is the total

Figure 8. High-pressure associative rate coefficients for CH3 + CH3

f C2H6 from ref 30. The solid line represents the parameters of eq 27
and the dotted lines the 95.4% confidence envelope.

Figure 9. Microcanonical rate and confidence envelope calculated from
Figure 8. The internal temperature of the methyl radicals is 500 K.
This gives an effective threshold ofEeff/kB ) 345 K.

kasso
∞ (cm3 s-1) ) 8.78× 10-11 exp[(-1.38× 10-3)T(K)]

(27)

4524 J. Phys. Chem. A, Vol. 102, No. 24, 1998 Hessler



energy of the system, vibrational plus rotational plus transla-
tional, andJ is its total angular momentum. Preliminary results
for J ) 3, 63, and 153 are shown in Figure 11. Of course,
microscopic reversibility must be used to convert the curves in
Figure 11 into analogous curves for the associative reaction.
However, we note that the threshold for dissociation increases
as the angular momentum increases. Therefore, the description
that emerges from these preliminary calculations is that as the
internal energy of the associating/dissociating species increases
the effective angular momentum of the system also increases
and, thereby, the effective threshold to association/dissociation
increases. Furthermore, the effective threshold of 959 cm-1 at
1000 K corresponds to aJ of 63 and the effective threshold of
3836 cm-1 at 2000 K corresponds to aJ of 153. The facts that

(1) the microcanonical rate calculated from kinetic data has an
effective threshold that depends upon the internal temperature
and (2)k(E, J)resolved rates calculated from a state-of-the-art
potential energy surface and sophisticated dynamical calculations
also have an effective threshold that depends uponJ support
the assumption that eq 9 is valid and encourage additional
investigations.

IV. Discussion

The phenomenological equations derived here are based on
the assumptions that van’t Hoff’s four-parameter equation
reproduces the kinetic data and that the height of the effective
threshold in his equation can be expressed as a function of the
internal temperature of the reactants. Then the phenomenologi-
cal equations for the reactive cross section and microcanonical
rate follow directly from the mathematical properties of the
Laplace transform. Sometimes, the assertion is made that van’t
Hoff’s equation is not unique and that the temperature-dependent
rate coefficient could be described by any number of other
equations. This may be true! However, any alternate descrip-
tion must provide an equal or superior reproduction of the data.
The uniqueness theorem of the Laplace transform53 implies that
the cross section calculated by an alternate description will fall
within the confidence envelope calculated from van’t Hoff’s
equation. Therefore, the fact that an alternate description may
exist is irrelevant. For an alternate description to be useful it
must provide a better representation of the data or a comparable
representation with an alternate physical description. For
example, in a subsequent paper we derive two new empirical
rate expressions for reactions that proceed on barrierless
potential energy surfaces.38 These equations accommodate the
quantum threshold behavior that controls the reaction as the
temperature approaches zero. Previously, only Berthelot’s
equation, which is contained within van’t Hoff’s equation, could
accommodate the low-temperature quantum threshold behavior.
By transforming the information contained in the kinetic data

into reactive cross sections for the forward and reverse reactions
of H + O2 T OH+ O and comparing them to calculated cross
sections it is apparent that additional theoretical work is
warranted. Similarly, from the study of the CH3 + CH3 system
the important role of angular momentum in the dissociative and
associative reactions has been identified. Another question one
may ask is, what is the relationship of the effective threshold
to the transition state in flexible transition state calculations?
One may conclude from these examples that the transformed
descriptions of the kinetic data, in terms of an energy-dependent
reactive cross section or microcanonical rate, provide a useful
tool for both experimental and theoretical kineticists. It is hoped
that this work will motivate additional questions, detailed
calculations, and additional comparisons with experimental data.
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Figure 10. Microcanonical rates as a function of translational energy,
εt/hc, for the association of two methyl radicals to form ethane. Three
different internal temperatures are shown. See the text for parameters
and details.

Figure 11. Calculated resolved rates,k(E, J), for the dissociation of
ethane.17,18The energy is the vibrational plus rotational plus translational
energy of the methyl radicals andJ is the total angular momentum of
the system.J values of 63 and 153 correspond to the effective thresholds
at 1000 and 2000 K shown in Figure 10.
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